
Diverse Hardware Platforms in Embedded Systems
Lab Courses: A Way to Teach the Differences

Falk Salewski, Dirk Wilking, Stefan Kowalewski

Abstract— Traditional methods for teaching the design of
embedded systems usually deal with either a hardware or a
software view of the system. In computer science it is mostly the
software view. The hardware issues taught mostly deal with CPU
based systems only and seldom with reconfigurable hardware.
We recommend having a more general view at embedded
systems in the way that it is always a programmable hardware
platform (CPU based or reconfigurable hardware) which has to
be programmed in a suitable programming language. In this
context we offer a lab course where students should get familiar
with different hardware platforms used in embedded systems.
They should solve the same task both with a CPLD and a
microcontroller each in order to clarify the differences between
the two implementations. In this paper our experiences in this
field of embedded systems education are described as well as our
plans to continue.

Index Terms— Computer science education, Lab course, Real-
time and embedded systems

I. I NTRODUCTION

T HE number of embedded systems is increasing. These
days, already more than 98% of all microprocessors are

found within embedded systems [3]. Such systems integrate
hardware and software components and require developers
with skills in both subjects. In this respect an interesting
aspect is, which types of hardware are applied preferably in
embedded systems. This information should form the basis
for the education of hardware and software for embedded
systems. Aside from many versions of CPU based systems like
microprocessors, microcontrollers (MCU) and digital signal
processors (DSP) also two other groups of hardware can be
found. The first group consists of reconfigurable hardware
as complex programmable logic devices (CPLD) and field
programmable logic arrays (FPGA); application specific inte-
grated circuits (ASIC) form the second group. In most embed-
ded system design courses for computer science students only
the design of CPU based systems is taught [1], [2]. However,
reconfigurable hardware is a good option to improve many
embedded applications [4], [8]; an option which students will
probably never choose if they do not get in touch with it
before. According to the need of education in this field [1],
[2], [3] we aim to teach our students the general ideas of
different hardware and their corresponding software. In the lab
course presented in this paper the differences between CPU
based systems and reconfigurable hardware are focused on.

All authors are with the Embedded Software Laboratory - Chair of
Computer Science XI, RWTH Aachen University, 52074 Aachen, Germany
(surname)@informatik.rwth-aachen.de

Since reconfigurable hardware (CPLD/FPGA) has blurred
the gap between hardware and software programming [1] it
has become harder to distinguish between these two areas.
This is our reason to recommend dealing with all kinds of
”programmable hardware” like hardware whose behavior is
defined by software. On the one hand, an MCU is used, which
is programmed in classical software (C in this case) as a
representative of CPU based hardware. On the other hand,
we use a CPLD, which is programmed in a suitable hardware
description language (VHDL in this case), as a representative
of reconfigurable hardware.

The basic ideas of the differences between these two
hardware approaches should be taught in a lecture. This
basic knowledge should include the possibilities to implement
sequential and parallel structures, possibilities of interfacing
internal and external hardware modules, limitations according
to the amount of memory and the number of logic cells etc.
However, if the students lack the practical experience, most
of them would not consider designing a system containing
reconfigurable hardware. Thus, we recommend a lab course
to become more familiar with these embedded systems. Since
we focus on the differences of hardware platforms and their
according software, a single task is given that has to be solved
successively with the CPLD and the MCU. Thus, a suitable
task had to be found which is representative for the field of
embedded systems and which could be solved on the basis
of both types of hardware. We will deal with this topic in the
following chapter. Another important aspect regarding the lab-
structuring is how much a priori knowledge can be assumed,
which issues can be taught in a short introduction as well
as how much the students can teach themselves by using the
according material. It is also important which hardware and
software is necessary during the lab and how the lab course
should be structured. These points will be discussed in chapter
3. Chapter 4 then states the experiences we gained in the
first run of our lab course and the most interesting results are
presented in chapter 5. Then, chapter 6 states some advantages
of this kind of a lab course and lab courses in general. We
conclude with chapter 7 and present our plans for future work.

II. ONE TASK FOR DIFFERENT IMPLEMENTATIONS

The task chosen for the lab course should allow present-
ing as many properties of embedded systems as possible.
In our opinion the most important properties are the need
to interface with the environment (real time requirements,
concurrency) and with external peripherals (e.g. bus driver,
memory chips, engine driver). Other important properties are

70



12,0%

28,0%

36,0%

24,0%

MCU 
programming 

knowledge
Very high
High
Medium
Low

Seite 1

56,0%

16,0%

24,0%

4,0%
CPLD / VHDL 
programming 

knowledge
Very high
High
Medium
Very low

Seite 1

12,0%

64,0%

20,0%

Peripheral 
programming 

knowledge
Very high
High
Medium
Very low

Seite 1

Fig. 1. Improvement of programming knowledge by hardware aspect.

the restricted resources in memory/logic cells, space, cost and
power consumption. The task we chose for our lab course is
the implementation of the speed measurement for an automo-
tive prototype vehicle we are designing at our institute for
research and teaching purposes [6]. The task comprises three
major sub-tasks: first, the actual speed measurement, second,
a measurement data processing and third, communication via
CAN bus.

The sensor signal for the speed measurement is rectangu-
larly shaped with a frequency proportional to the speed of the
according wheel. Four of these signals have to be evaluated
concurrently in order to gain new data for all four wheels in
a short interval. Maximum values for delay and accuracy are
given.

The measured values have to be processed according to a
given table in order to fit into a given format of the CAN
message. Furthermore an error message should be calculated.

The measured and processed values of the actual speed
values have to be sent to the CAN bus as soon as new data is
available in a single CAN message. For an easy access to the
CAN bus an external stand alone CAN controller (SJA1000)
is used which has to be initialized before.

Since this task is a combination of parallel and sequential
tasks we believe that it is suited for both implementations.
Details of the task can be found in [7].

III. T HE LAB COURSE

According to the fact that hands-on work significantly
improves a students learning and subsequent retention of
material [5], all student’s should have access to suitable
development boards. For a lab course consisting of 24 students
twelve sets of hardware were needed (groups of two). Since all
students should work on both hardware platforms they were
split up in two main groups. One group started with MCUs and
the other one with CPLDs. This procedure allowed working
with six MCU and six CPLD boards. For the CPLD the Xilinx
CoolrunnerII CPLD Starter Kit was chosen, for the MCU we
used a development board based on the ATMEL ATmega16
8-bit RISC MCU. Both decisions were made according to the
following reasons: low price, free development environment
and good support with tutorials, news groups etc.

The development environments used are based on freeware
only for the following reasons: First we would not be able
to afford the high number of licenses. The second and even

more important point was, that students this way could use
the environment at home in order to become familiar with it.
The simulator, which was available in both cases, even allows
the debugging of example implementations without having the
actual hardware.

For the access to the CAN bus additional boards with
CAN controllers and the according bus interface were needed.
We designed boards, which can be connected to the MCU
(5V device) and to the CPLD (3,3V device), and provided 6
of them. We also provided 6 simple frequency synthesizers
for testing the velocity measurement (simulating the sensor
signals). Therefore, two groups had to share one CAN board
and one frequency synthesizer for debugging.

Fig. 2. Used hardware structure (use CPLD or MCU).

For the participation in this lab course we recommend
visiting the lecturesIntroduction to Embedded Systemsand
Embedded Software Designoffered by our institute. The first
lecture deals with the basic properties of embedded systems
and provides an introduction for microcontrollers and pro-
grammable logic controllers. We are planning to add basics of
Programmable Logic Design in the future. The second lecture
deals with development processes and methods for software
for embedded systems. This includes requirements engineering
(functional and non-functional requirements) and architecture
design and analysis. In addition to this lectures we offered
a two day introductory course in the week before the actual
lab course had started. On the first day, the students were
introduced to the programming of MCUs in C. On the second
day, an introduction was given in the programming of CPLDs
in VHDL. Since most of the students were not familiar with

71



VHDL, an introduction to the basics of this language was
given as well. At the end of each day the same example (traffic
light with user interface) had to be implemented on the actual
hardware in order to give a first impression of the differences.
During the introductory course we tried to clarify the important
properties and techniques for MCUs (e.g. Interrupts, I/O ports,
internal peripherals like timer, hardware specific C commands,
debugging) and CPLDs (e.g. parallel/sequential structures, I/O
ports, VHDL, debugging). Data sheets for all hardware, the
introduction slides and a document with VHDL basics were
handed out to each group on a CD.

The actual lab course took place on 13 appointments for
3h/week. We had to offer more appointments for some students
who had not completed their task after the 13 dates yet;
however some of the students also finished earlier. Since there
had been no dedicated room available for the lab course, the
hardware equipment and all cabling had to be set up for each
day. Therefore, for installation and unistallation about 15min
each were needed.

During the lab course all CAN boards were connected to
a single bus, which in turn was connected to a PC based
CAN bus monitor. On the monitor, the students could check
if they were sending their messages correctly. The general
function of the velocity measurement could be tested with
the simple frequency synthesizers. For testing the accuracy
of the sent values a waveform generator was available. The
successful communication between the MCU/CPLD and the
CAN controller could be checked by a special LED on the
CAN board.

The students had to organize their work on their own and
to find the necessary information in the according data sheets.
However, at least one instructor was available all the time to
answer upcoming questions as well as to help if necessary.
Most of the answers given to one group during or after the
lab were made available via Email to the other students the
following day.

At the end of each implementation an acceptance test was
done in order to check the basic functionality. Each group also
had to hand in a documentation of their final versions (CPLD
and MCU).

IV. EXPERIENCE WITHLAB COURSE

The first lab course has been finished successfully with 26
students by now. Almost all of the students managed to pass
the final acceptance test with both of their hardware implemen-
tations. During the introductory course most of the students
learned very enthusiastically and showed strong motivation for
teaching themselves the necessary additional knowledge. This
knowledge included how to work with the integrated timers
(MCU), the hardware specific parts of the programming lan-
guage C (MCU) and the basics of the programming language
VHDL (CPLD). For both implementations the access to the
external CAN controller (SJA1000) and its correct use had to
be understood.

According to the high number of possibilities in the field
of the SJA1000 initialization many problems have occurred

in this context. Wrong initialization was hard to detect since
students had difficulties in separating the problems they had
in the software part of the communication (wrong values in
initialization, incorrect timing in write/read function, incorrect
order of write/read accesses) and the hardware part of the
communication (problems with bidirectional communication,
incorrect jumper settings, incorrect connections in general).
Thus we are planning to provide more detailed information
about the use of the SJA1000 and its initialization in the next
lab.

One of the major problems that occurred with the imple-
mentation on the CPLD were the restricted resources. Many
students had problems fitting their design on the chip. In most
of the cases this problem could be solved by adapting the
calculations done in the design (reducing size of variables,
simplifying calculations). However, in some cases the problem
remained and thus we are planning to use bigger FPGAs
(much more logic available) for the next term. We also realized
that some students were not able to implement a useful com-
bination of parallel and sequential structures successfully in
VHDL. Thus, more information how to solve these problems
has to be given in the introductory course next term.

Another problem concerned the CPU time needed for a
compile run (synthesize, translate and fit) for the CPLDs. It
turned out to be much higher than the one needed for the
MCUs (minutes instead of seconds). Thus, we will try to
improve the performance of our computers for the next term.

According to the longer compile runs and the less familiar
software and hardware the groups which started with CPLDs
needed longer to finish their first implementation. Thus, we
had to provide some extra time for this implementation. This
problem was solved by shifting the date of changing the groups
by one week and by offering an extra date. However, we are
planning to use more hardware sets in the next term to avoid
the problem according to the need of changing the hardware
in the middle of the course.

At the end of the course, all of the students had to fill out
two questionnaires in order to evaluate the lab course. The first
one is part of the university teaching evaluation and the second
has been developed at our institute to improve the contents of
the lab course itself. Some of the results are presented in the
following chapter.

V. RESULTS

In this chapter, the most interesting results of the evaluation
will be presented. One of these results concerns the question of
how much the students have improved their knowledge in the
field of programming MCUs, CPLDs and interfacing external
peripherals. According to the results presented in figure 1 most
improvements could have been gained in CPLD and peripheral
programming. However, a small number of students stated
that they had learned only very little in this field. Another
interesting point is the amount of external help the students
needed in order to solve their task (figure 3). In the case of the
CPLD significantly more external help was needed. This result
corresponds well with figure 4 in which the amount of code

72



24,0%

76,0%

External help for 
MCU
Medium
Low

Seite 1

24,0%

24,0%

52,0%

External help for 
CPLD
High
Medium
Low

Seite 1

Fig. 3. External help for different platforms.

developed at home is presented. In the case of the MCU about
76% of the students never have programmed at home, in the
case of the CPLD it only has been 32%. Figure 5 provides
some additional information about the CPLD programming
done at home with respect to the fact if the groups started
with the MCU or the CPLD.

76,0%

20,0%
4,0%

MCU code at 
home

0%
25%
50%

Seite 1

32,0%

28,0%

20,0%

20,0%

CPLD code at 
home

0%
25%
50%
75%

Seite 1

Fig. 4. Programming done at home.

58,33%
16,67%

25,0%

CPLD code at 
home

0%
25%
50%

Treatment: MCU first

Seite 1

7,69%

38,46%

15,38%

38,46%

CPLD code at 
home

0%
25%
50%
75%

Treatment: CPLD first

Seite 1

Fig. 5. CPLD programming done at home by starting group.

Those who started with the CPLD did much more CPLD
programming at home than the group who started with the
MCU. This could be interpreted in two different ways. First,
the groups who had just started could have been more moti-
vated and have thus worked more at home. Second, the first
steps to solve the given task (understand the general ideas of
CAN communication, speed measurement, etc.) were harder to
realize in the case of the CPLD. In the next term an according
question will be added in the questionnaire to clarify this point.
Another aspect we will have to look closer at in the next term
is presented in figure 6. According to this figure some students
(20%) have to improve their ability to distribute the work
within their group. Finally, the students were asked how useful

40,0%

40,0%

16,0%
4,0%

Distribution of 
work within 

group
Very good
Good
Bad
Very bad

Seite 1

Fig. 6. Distribution of work within a group.

the knowledge gained in this lab course is to solve future tasks

in this field. The result presented in figure 7 represents in our
opinion a good result for this first lab course. Since many
results indicated that the programming of the CPLD needed
more effort we will try to reduce this difference by giving a
more detailed introductory course in the next term.

Fig. 7. Reuse of knowledge.

VI. A DVANTAGES OF DIVERSE PLATFORMS IN EMBEDDED

SYSTEMS LAB COURSES

Lab courses always involve a lot of work before and during
the actual course, especially when a lot of hardware is used.
However, we believe that they provide the best way to teach
the practical aspects of embedded systems. Especially the
use of diverse platforms turned out to be an ideal way to
clarify the differences between the different platforms used
in embedded systems. In our view, the results gained from
this first lab course confirm this position. Additionally, a lab
course could be used for collecting empirical data on many
aspects of the embedded systems domain. In our case all
versions of software compiled during the lab course were
collected. We are planning to analyze these data in order
to receive information about the differences between CPLDs
and MCUs according to non-functional qualities as reliability,
safety, maintainability and changeability.

VII. C ONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, a way to teach embedded system design
with focus on the difference of diverse hardware platforms
like CPLDs and MCUs and their according languages was
proposed. In this context, the same task had to be solved
on a CPLD and a MCU each by every group in order to
demonstrate the differences. The biggest problem that occurred
during the lab was the inappropriate use of parallel and
sequential structures, the limited resources in the case of the
CPLD and the problems in understanding the data sheet of the
SJA1000. We are sure to meet these problems in the next term
by improving our introductory course and by using a larger
device. We also stated that lab courses like the one presented
in this paper are well suited for the collection of empirical
data in the field of embedded systems.

B. Future Works

As mentioned above, the lab course for the next term will
be improved by using different hardware and by extending the
introductory course in the fields where the problems occurred.
We are also planning to add some small additional tasks as
a simple user interface. This way, we hope to improve our

73



intention in clarifying the differences between reconfigurable
hardware and CPU based systems. We also plan to implement
a web page including the FAQs from the first lab course.
A further lab course is planned for the summer term 2006
based on Atmels FPSLIC Chip. According to the fact that
this chip includes an 8bit MCU and a 40k FPGA we hope
to demonstrate not only the differences between CPLDs and
MCUs but also possible approaches of HW/SW Co-Design in
the way that a single task is implemented on a combination
of both hardware. We plan to let the students solve a modified
task on three different hardware platforms. The first one would
be an MCU, the second an FPGA and the third a combination
of both (FPSLIC Chip).

C. Acknowledgments

We thank XILINX (www.xilinx.com) for providing us the
Spartan3 FPGA development boards we are going to use in the
next term. We thank ATMEL (www.atmel.com) for providing
us the FPSLIC development boards we plan to use in summer
term 2006.

REFERENCES

[1] J. M. P. Cardoso. New challenges in computer science education. In
ITiCSE ’05: Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science education, 2005.

[2] N. Chang and I. Lee. Embedded system hardware design course track for
cs students. InProceedings of the 2003 IEEE International Conference
on Microelectronic Systems Education, 2003.

[3] R. Hartenstein. The changing role of computer architecture
education within cs curricula. Invited talk, Workshop on
Computer Architecture Education (WCAE’04) at 31st International
Symposium on Computer Architecture. http://helios.informatik.uni-
kl.de/staff/hartenstein/lot/hartensteinwcae04.

[4] R. Hartenstein. The digital divide of computing. InProceedings of the
ACM International Conference on Computing Frontiers, pages 357–362.
ACM press, 2004.

[5] A. R. Korwin and R. E. Jones. Do hands-on, technology-based activities
enhance learning by reinforcing cognitive knowledge and retention?
Journal of Technology Education, 1(2), 1990.

[6] Project:. Experimental vehicle for automotive software design.
http://www-i11.informatik.rwth-aachen.de/Versuchstre+Design&bl.html.

[7] Webpage:. Lab course programming embed-
ded hardware. http://www-i11.informatik.rwth-
aachen.de/Programmierung+Eingebetteter+Hardware.html.

[8] S. Wong, S. Vassiliadis, and S. Cotofana. Embedded processors: Charac-
teristics and trends. Technical report, Computer Engineering Laboratory,
Delft, The Netherlands, 2004.

74


